Where to Put Decay in Trees?

Any time a living part of a tree is cut open through pruning, or broken open through storm damage, the remaining area will likely decay. This article presents a way to think of pruning as “where to put decay into the tree.” (Photo 1)

Photo 1: An unclosed wound resulting in a hollow in a city tree in Ferndale, Michigan. Unless otherwise noted, photos courtesy of the author.

Most of us working in arboricultural or horticultural fields are aware of a principle known as the compartmentalization of decay (or dysfunction) in trees, abbreviated as CODIT. In short, the principle describes how woody plants will encase dysfunctional tissue within functional tissue in order to prevent the spread of the dysfunction.

This article is neither a history lesson nor a refresher on the CODIT model, though this article is predicated on the reader having a basic understanding of the theory. Alex Shigo’s CODIT model has largely influenced the way modern arboriculture is practiced in the United States. While it isn’t a complete model, it has remarkably improved the way trees have been pruned since the theory’s publishing, circa 1979.

Shigo’s model has led to the development of a “proper cut,” and it is the first thing any arborist or tree cutter learns before working a tree. (Photo 2) The idea is that this cut best positions the tree to enclose the decayed area as quickly as possible while minimizing damage to the surrounding tissue left on the tree.

Photo 2: Newer-style three-cut method. From An Illustrated Guide to Pruning, Third Edition, by Ed Gilman. Image by Edward F. Gilman. (http://hort.ifas.ufl.edu/woody)

Knowing how to make the cut isn’t enough; we have to zoom out. The importance of where the cut is being made on the tree is extremely understated – it is of the utmost importance in the long-term management of urban trees.

Going back to the CODIT principle, it states that the area where the cut limb used to be attached to its parent stem will subsequently decay until the tree can enclose the decayed region. This means that another way to consider pruning is not only where to make cuts, but also where we are putting decay into the tree.


Briefly, decay is facilitated primarily by fungi. Any time a living part of a tree is cut open through pruning, or broken open through storm damage (or embolism or cavitation), the remaining area will likely decay. Trees decay with or without human intervention.

Decay is complicated and is worthy of volumes of textbooks; it takes many forms and varies significantly. Its ecological and economic importance cannot be overstated. For our purposes here, we will operate under this simplified definition of dysfunctional/decayed wood: Wood that is undergoing decomposition.

Wood undergoing decomposition functions physiologically and structurally at decreasingly suboptimal levels. For the purpose of this article, this definition encompasses decay at all magnitudes and includes decay of all origins. In this article, we also assume that large, decayed regions in trees, while valuable for wildlife habitat, are best avoided in the management of urban trees next to immovable structures, such as homes and other buildings.

Reduction cuts vs. removal cuts

There are many different types of cuts on trees, and each has a pattern of aftermath that is recognizable. From old-school workers to new-school workers, practitioners of tree cutting or arboriculture will utilize two common cuts – reduction cuts and removal cuts. Dr. Ed Gilman, renowned horticulture educator and author of many academic pruning books and studies, defines these two cuts as follows.

Reduction cut: Reduces the length of a stem or branch by removing the terminal portion back to a living lateral branch of equal or smaller diameter. (Figure 1)

Figure 1: Reduction cut. From An Illustrated Guide to Pruning, Third Edition.

Removal cut: Removes a branch back to its parent stem or trunk and retains the collar … In contrast to a reduction cut, the part of the plant that remains following a removal cut has a larger diameter than the part that was removed. Examples include removing a limb from the trunk … (Figure 2)

Figure 2: Removal cut. From An Illustrated Guide to Pruning, Third Edition.

Removal-cut considerations

A tree’s capacity to compartmentalize wounds diminishes as the cut sizes increase, regardless of whether the cut is properly made. Removal cuts are generally larger than reduction cuts, and the placement of their subsequent decay is much more detrimental than with reduction cuts. This is because the loads borne on the decayed regions in the trunk following large removal cuts are much greater than loads borne out on the periphery of the crown.

It is important to admit that sometimes full-limb removal is the only effective cut for a given scenario. However, it absolutely should not be the preferential cut it is today, as evidenced by the prevalent, malpractice pruning we still see in the average neighborhood. There are almost always opportunities to make reduction cuts and mitigate risks in other ways. (Figure 3)

Figure 3: Graphic by the author.

Where to put decay

When it comes to pruning mature or large trees, the implementation of large removal cuts, especially against the trunk, should be avoided wherever possible because of the decay (and therefore loss of cross-sectional strength) that will develop afterward. At that point, it doesn’t matter if the cut is properly executed.

Both of the cuts pictured in photos 3a and 3b qualify as removal cuts by Gilman’s definition. The relationship of the diameters is meaningful only up to a certain point.

Photos 3a and 3b: Both cuts pictured above qualify as removal cuts by Gilman’s definition. The relationship of the diameters is meaningful only up to a certain point. From An Illustrated Guide to Pruning, Third Edition.

The image on the left shows a trunk:stem ratio of approximately 4:1 on a small stem. The resulting decay region will be minimal relative to the stem it is within. The image on the right shows a trunk:stem ratio of approximately 1.25:1. In proportion to its parent stem, the removed stem is nearly the same diameter. Given the size of the stems (approx. 12 inches) pictured on the right above, this cut should be avoided. The resulting decay region would greatly compromise this tree’s structure, as now the remaining stem, bearing all of the crown, has increasingly reduced cross-sectional strength as it decays.

Given that most urban trees do not have the resources available to their forest-dwelling counterparts, we are to assume that this example tree is not operating at “full capacity.” The rate of decay almost always exceeds the rate of compartmentalization of larger-diameter pruning wounds, meaning the wound will never close, which ultimately results in a significantly sized hollow.

Other factors that influence the avoidance of this cut are the location of the tree – in a parking lot with many targets – and the already present (and compartmentalized) decay from a previous pruning wound in that area.

If we’re really working for the trees, the size of the cut, or rather the size of the future decay, needs to be the primary deciding factor on whether a cut should be made when removing large limbs from trunks. The future load on the decayed region, the tree’s life stage, the tree’s exposure, targets around the tree and how the tree or limb’s center of mass will be affected are all things to consider when placing decay in a tree.

Aftermath of large removal cuts on mature urban trees

These man-made hollows are often the breaking point for future storm failures. (Photo 4) The image in Photo 4 is of a highly decayed region that resulted from a large removal cut against the trunk of a swamp maple (Acer saccharinum). Notice how the decayed area is crumbling. As this continues, it will not provide a solid surface for the tree to compartmentalize around, and thus it never will close. Ultimately, ram’s horns  will form. In the region where we practice, silver maples have been maligned by some arborists as being “junk trees” for this very reason. Rather than blaming the tree, we ought to be blaming our practices.

Photo 4: The author’s hand in relation to a highly decayed region resulting from a large removal cut.

The subsequent decay after pruning is not a negligible byproduct. You can’t have the pruning cut without the decay; they are inseparable. That decay will be present in the tree for the remainder of its life, even if the tree compartmentalizes it.

Many pruning cuts compartmentalize totally fine, and hollows can form naturally. It just so happens that a large proportion of hollows found in urban trees are a direct result of pruning excessively large limbs off of trees that cannot handle it. This article isn’t claiming all removal cuts are bad. Certainly, there are reduction cuts that result in significant hollows as well, just fewer of them.

Context matters: What are the goals of the project? To meet certain wildlife requirements, large removal cuts may be perfectly acceptable in a “veteranization” project (i.e., creating habitat), where a hollow is the intended outcome. But the point remains, knowing how to make the cut is not enough. Knowing what happens to the tree as a result of our work is paramount and must not be ignored. What will happen years after you make your cut? (Photo 5)

Photo 5: The author performing an inspection of an old cut with a resistograph. The cut was made approximately 20 years prior, according to the homeowner. As a result of this old cut, now the tree faces possible condemnation given it grows over the client’s home.

Responsibility for the future

When a customer is shopping for quotes, there’s nothing that stands out about a salesperson who says yes to everything. An arborist who can speak clearly about risk mitigation and long-term strategies for the client’s tree has a significant competitive advantage over someone who still needs his or her spurs to prune.

We have to zoom out. We have to explain these concepts to our customers. The “customer is always right” method is losing out to the “tree first” philosophy. What the customer actually wants is the information to make the best decisions for their trees.

It might be useful to assume that any large removal cut made on a mature tree will not compartmentalize – to assume that a hollow will form. This way we are always going to opt for the option that leaves the least amount of decay. Considering “where to put decay” when pruning ensures we are thinking of the tree’s future.

It is entrusted to us arborists, first and foremost, to be the arbiter for trees in their preservation. If not us, then who?

Jeremiah Sandler, Certified Arborist and ISA Tree Risk Assessment Qualification (TRAQ) certified, is owner/operator of Tree First Arboriculture in Ferndale, Michigan.


  1. Thank you for this article. I appreciate and also advocate for enhanced concern for the trees and the consequences of every human interaction on the well-being of the greater environment.

  2. First wound closure is not compartmentalization. Compartmentalization has a MODEL with 4 walls. Wound closure is just that, wound closure. I find it interesting how one can criticize Dr. Shigo while not understanding how the tree works. I spent 290 professor hours in front of Dr. Alex L. Shigo and with the tools and techniques I received to answer my own questions about trees, I find it hard to find fought in the tools. We do need to stop destroying ecosystems, period. Even if it is the only good thing that the trees are in a group then it is a good thing. While people claim to be above Dr. Shigo I find hard to believe. Especially during his research for the USFS they isolated hundreds of thousands of micro organisms on fresh wound services. Then they mapped them in their mapping room. Then the biggest thing is the hundreds of thousands of microorganisms were IDENTIFIED. When Dr. Shigo stopped doing that type of work with the USFS no one continued. WHY, because no one on earth could properly identify the hundreds of thousands of microorganisms. So nice try but no thank you. That book is SEALED. What about the need for everyone to understand TREE BASICS by Dr. Shigo. That is what you are supposed to be working on I believe. Here is the quiz for my competition.


    John A. Keslick, Jr. 🌪🌪🌪🔥🔥🔥
    BOONITE TEACHER“““““““`ws1
    Keslick and Son Modern Arboriculture
    214 N. Penn Street
    West Chester, Pa 19320 USA
    610-657-5329 or 610-696-5353
    Tornadoes, fire, volcanic eruptions, floods, storms, explosions, tsunamis, and other abiotic forces keep reminding humans they are not the BOSS
    TREES HAVE DIGNITY, to coMmand respect.

    Every tree of the field knows who the BOSS.

  3. It’s great explanation about the compartmentalization of decay. It is true that while pruning, considering “where to rot” also means maintaining the tree’s future in mind. Thank you for sharing your post!

Leave a Reply

Your email address will not be published. Required fields are marked *

Click to listen highlighted text!